Retention mechanism, isocratic and gradient-elution separation and characterization of (co)polymers in normal-phase and reversed-phase high-performance liquid chromatography.
نویسندگان
چکیده
Synthetic (co)polymers or (co)oligomers with two (or more) repeating groups show not only molar mass distribution, but also composition and sequence distribution of the individual repeat units. To characterize such two- (or more-) dimensional distribution, liquid chromatography under "critical conditions" has been suggested, where the separation according to one type of repeating units is suppressed by balancing the adsorption and the size-exclusion effects. In present work it is shown that by combination of adequately selected separation conditions in normal-phase and in reversed-phase systems, the two-dimensional distribution mode can be adjusted to result in the separation following the distribution of any of the two repeat units in ethylene oxide-propylene oxide block (co)oligomers. Based on the retention mechanism suggested, prediction and optimization of the conditions for isocratic and gradient-elution separations of (co)oligomers is possible. HPLC-MS with atmospheric-pressure chemical ionization is a valuable tool for unambiguous identification of the individual (co)oligomers and their tracking in course of method development. Gradient elution can be used for the separation and characterization of block (co)oligomers of ethylene oxide (EO) and propylene oxide (PO) according to the number of the units in one block, while the separation according to the distribution of the units in the other block is suppressed. The effects of the arrangement of the individual EO and PO blocks in the block (co)oligomers (the sequence distribution) affects significantly the retention behavior and the selection of the optimum separation conditions.
منابع مشابه
Separation of Somatropin and Its Degradation Products by High-Performance Liquid Chromatography Using a Reversed-Phase Polymeric Column
The accurate prediction of protein stability is one of the most challenging goals in protein formulation and delivery. In this study, a gradient RP-HPLC method is described for the separation of human growth hormone (hGH) variants as deamidated and oxidized forms. The methodology employed a polymeric poly (styrene-co-divinylbenzene) column and a 1mL/min flow rate of a linear gradient of 0.1% v/...
متن کاملSeparation of Somatropin and Its Degradation Products by High-Performance Liquid Chromatography Using a Reversed-Phase Polymeric Column
The accurate prediction of protein stability is one of the most challenging goals in protein formulation and delivery. In this study, a gradient RP-HPLC method is described for the separation of human growth hormone (hGH) variants as deamidated and oxidized forms. The methodology employed a polymeric poly (styrene-co-divinylbenzene) column and a 1mL/min flow rate of a linear gradient of 0.1% v/...
متن کاملA simple, sensitive and rapid isocratic reversed-phase high-performance liquid chromatography method for determination and stability study of curcumin in pharmaceutical samples
Objective: This study was designed to develop and validate a new reversed-phase high-performance liquid chromatography (RP-HPLC) method based on Q2 (R1) International Conference on Harmonization (ICH) guideline for determination of curcumin in pharmaceutical samples. Materials and Methods: The HPLC instrument method was optimized with isocratic elution with acetonitrile: ammonium acetate (45:55...
متن کاملNew approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear ...
متن کاملEVALUATION OF THE USE OF ANIONIC/ NONIONIC MIXED MICELLES IN REVERSED PHASE LIQUID CHROMATOGRAPHY OF CHLOROPHENOLS
The use of aqueous mixed micellar system consisting of sodium dodecyl sulfate (SDS) and polyoxyethylene (23) dodecanol (Brij-35) as the mobile phase in reversed-phase liquid chromatography was studied. A group of chlorophenols was used as the test mixture. Adding organic modifier to the system showed that the use of low concentrations of organic additives improves efficiency in SDS/Brij-35 mixe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chromatography. A
دوره 869 1-2 شماره
صفحات -
تاریخ انتشار 2000